منابع مشابه
Low rank update of singular values
The notion of a low rank update arises in many important applications. This paper deals with the inverse problem of updating a rectangular matrix by additive low rank matrices so as to reposition the associated singular values. The setting is analogous to the classical pole assignment problem where eigenvalues of a square matrix are relocated. Precise and easy-to-check necessary and sufficient ...
متن کاملThe singular values and vectors of low rank perturbations of large rectangular random matrices
In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalues of Hermitian matrices, the non-ra...
متن کاملGeneralized SURE for optimal shrinkage of singular values in low-rank matrix denoising
We consider the problem of estimating a low-rank signal matrix from noisy measurements under the assumption that the distribution of the data matrix belongs to an exponential family. In this setting, we derive generalized Stein’s unbiased risk estimation (SURE) formulas that hold for any spectral estimators which shrink or threshold the singular values of the data matrix. This leads to new data...
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملDiscretized Dynamical Low-Rank Approximation in the Presence of Small Singular Values
Low-rank approximations to large time-dependent matrices and tensors are the subject of this paper. These matrices and tensors are either given explicitly or are the unknown solutions of matrix and tensor differential equations. Based on splitting the orthogonal projection onto the tangent space of the low-rank manifold, novel time integrators for obtaining approximations by low-rank matrices a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2006
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-06-01825-4